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DISCUSSION OA 01/10/24

welcome :

- We will start Berkeley Time -

-Grab a worksheet from the front desk.

About Me

- ind-year
,
studying Cs + Physics .

- Robotics + reinforcement learning research !

- Email me :Jennifer-zhao & berkeley - edu

↳ about 1370 or otherwise ! I'll do my best to help .

Discussion of Notes

- Read the course site : eecs to . org
- course email : Sp14 & ees 70 . ord
- HWO is due : 1120 , Saturday

- my notes & much more are on Ed .



IS 70 Advice

-keep up with pace of class .

conceptual understanding
first

your knowledge

↳ Office Hours. ⑳
with friends :

↳ Discussion section !
your knowledge

-Review regularly

Discussion Logistics
- Review + exam problems (Berkeley Time) .

- Mini-lecture.

-worksheet + group-work .



sets not always

natural numbersN = 50 ,
1

,
2, .

. . 3
integers = S

...,

: 3
, -1

,
0

,
1, 2, ...

rational numbers Q : 39/a ,
b 2

, 6703
all real numbers IR ↑ set builder

set notations operations notation ,

I CQCIRCK
refers to property

↑ ("Such that"

proper subset

Cartesian product : AxB = ((a , b) /a + A
,

b > B3

ex: NXIN = 310 ,
03

, (1 , 03
,

10
, K

,
(1

, 1)
... 3

power set : T(s) = Gall subsets of 33

e S : 3 1 , 23
,
%(5) : 393 , 313 ,

323
, 31 , 233

↓ ↓

ISI : 2 (p(s)1 : 4

cardinality of power set -
is cardinality always

finite ? IQI = co
.

Isl : 1 => (P(s)) : 7 What about11RI ?
Also co

...

Notation examples - SUT

< 14 - two divides four O set
-



quantifiers

(NX - 1)(Ay(2)(y > x)

4

wall integers * I
thexistsan integer -

nested quantifiers
it can be helpful to think of nested

quartifiers as rested for loops .

ex
:
Ex + YP(X , y) -> for all > :

for all y :

= used for logical equivalence
↑ (x , y) == True

swapping quantifiers
(xtyP(x , y) = fytxP(x , y) problem-solving
-X1Y P(X , y) = = yExP(X , Y)

approach :

translate logical
t xzyp(X , y) =zy * XP(x , y)

&
statement To words



And
,

Or
,

Not

iTF

FT F F I
FF F F FF

implication

p =g = if p , then g

e it rained = > Sidewalk is wet

if p is not satisfied
,

value of g is irrelevant-cracuously true

converse :

g= p - E(pEg) unless (PE9)

contrapositive : Tg=-p -> = (pE9)

ex
: sidewalk wet -> it rained X

ex
: Sidewalk not wet -> did not rain



same
Truth

+able

logical equivalence of

(P=g) = ( +PVg)
-> rewriting implication

as disjunction can allow

us to apply De Morgan's !

De Morgan's caws

-(p1Q) = (7PV - Q)

7 (p va) = (-P1(Q)

↓
7 (txP(x)) = EX(P(x)
- (Exp(x)) = VX(P(x))
-> questions !



DISC
. OB

(8) 01/18/24

implication as Disjuction they have the

~ same truth table
P= g = [PVg)

Propositional Logic Review

-prove statement .

- PV(PVQ) = - PVQ = P = Qa

Quantifiers Review

*ove

↓

(ty + S) P(y)1(EXES)Q(x) ↓ statement .

↓
these two - (tyts) P(y)1(zx(S)Q(x)

statements are

equivalent I

DiSC .
OR Notes

- Read : noteo
,
1

,
2

- of starts next week ! "J
- Mini-vitamins OA &OB are due : Tomorrow

,
11 : 59

- HWO is due : Saturday , 4 : 00PM



how do we prove something ?

1. direct proof
-

2
. Proof by contraposition 3 Possiblyusedwith-

3 . Proof by contradiction
-

direct proof

assume p

↓
logical steps
↓
therefore Q



proof by contraposition
proving the -contra-

recall :

P = Q = +Q=p
-> Positive =

proving-

the original implication
set of positive

↓ integers
ex: if n=ab

, abel++,
then adm or bot.

It suppose as at and b >J assume -Q

ab < m . m = n

& ab > n

Gab Fu J- Therefore, P
I

proof by contradiction

leastPof22days
must l e

#: suppose <4 of 22 days falls] assume - P
on same day of the week.

① at most 3 of the same day of the week

② I days of the week

③ at most 3x7 : 21 days of week

->E contradicts premise ! J- R1TR , therefore P

I



pigeonhole principle

if UsK => for n objects placed into k boxes
,

at least 1 box has I objects

proof by cases

ex
:

ne In In

& case (n = 0) : case (n = 1) : case (n = -1) :

0 = 0 non = no n2 -02 - 17n
n zn

I

WLOG

"Without Loss of Generality" :

① prove case 1
. G assume same argu- done .

ment applies to

other cases.

proving uniqueness

① Assume EX S . t . P(X)

② Assume another solution
,
XI

③ snow X =X'
,
which isacontradiction



Proofs with sets

prove A & B :

prove A = B :

① take at A ⑳ ① prove A & B

② show a - B
y ② prove A 1 B

formal definition
of subset

Images & Pre-images

X f(X) image of X

On
+: ((y = f()( . +

. xeX

Y preimage of Y
f

+ (y) : \x/ + (x) + 43

review : proving logical equivalence

showing PEG is showing PE
rue

1
. Prove pEg (=)

2. prove =P (E)



(T) 1/23/24
D) I SC . 1A

① identify p & g
contrapositive Review

-> ② swap negate both,
p = g = - g= 4

remember

↓use De Morgan's !

ex: - (a = b and c[d)

-(a[b) or - ((ed) =
distribute neg , &
flip and - or

a > b or o < d

contraposition Review

Grove :

: ① suppose 21d

② as contains 2 . 2 . 2 in its prime factorization

③ as contains 4 in its factorization

① 4/93
: 4493 = 2X9

.

I

Discussion 1A Notes

- HW1 Due : Saturday ,
1127

,
4 : 00 PM

-Read : Notes 34

- Office hours have begun

No more TA notes
, Attendance taken !



proof by induction base case not necessarily

- O
,

but usually
proof structure for Pens <

" smallest" case

① base case : prove PLO)

② IH : assume P(K) is true
-> works for proofs

& IS : Snow P(K) = P(K+ 1) is true over discrete cases
-

ex:provethateverynodeof
aLinkedisa is

root

If: BC : can access ot . P(O)

-

Modanbeacceeda
↑ (k) => P(4+ 1)

inductive hypothesis ! I

I
Y

recursive leap of faith
In both cases,
assume PCK is tre.



strong induction

might
need multiple

base cases

Proof structure

& BC : prove P(0) ,
etc .

② IH : assume P(0)1P(1) 1 ... 14(k)

③ IS : show IH => P(4+ 1) is true

>
e

: consider a Linked List 000 ...
-

with pointers tonextnext nodesed.
# BC : can accesst 31. P(0) 14(1)

IH : assume oth
, 1st , ...,

4th nodes can all be accessed .

9) (0) 1 P(1)1 ... 14(k)

1S : 14thnode can be accessed from 111th ·

(k-1) [K ,
So It holds

.

IH = P(K+ 1)
I

weak induction fails because 1(k) # P(K+ 1) !



strong Us .
weak induction ?

weak induction is a special case

⑭strong & of strong induction

d

when in doubt,

strong induction .

axiom of weak induction

↑ (O) 1*k(P(k) => P(k + 1)] =>Enp(n)

algebraic example

e
: Prove: E

#
: BC : n = 1 + 1 =1.(2+

:)
IH : assume< for some KE

Is: n= + (k=+
+C

= t (k(k+ 1)((k + 1) + b(k+ 1)y = 5(k+ 1)(k(2k + 1) + 6(k+ 1)]

= - (k+ 1)(2k
"

+ 7k+ b) = f(k+ 1)(2(k+ 1) + 1)(k+ +1) E



Example from Notes

ex: every neI where n) I can be written as

product of 1 or more primes .

#: BC : n = 2 V IH : assume [In = K , P(n)

IS : can n = k + 1 be written as product of primes ?

Prime-is notPrimekvimes

~

example : recursive definition of a
"

f (a , u) : -> prove correctness
if n = 0 :

using induction
return 1

-

else :

return af (a
,
n - 1) recursive leap

# : BC : n = 0 + f(a , 0) :

1 : dov
of

faiths
IH : assume f(a , k) is correct -> f(a , k) : a

IS : f(9 ,
k + 1) = gof(d , k) = dra" = akt-

I



Example : Merge Sort

mergesort (1) :

iflen(1) 1 :

return L

else :

m = (4)
1 : mergesort (1( : m))

11 : mergesort (c (m+1: )
return merge(2 , 43

#ofcorrectnes
mergesort (2) = 1 = sorted list-

IH : len(1) : 0
,

1,
. . .,
k-> assume mergesork(C) : sorted list

IS : len(1) = k + 1 -> mergesort (1) =

merge (mergesort (([im)) ,
mergesort (((m + 1 : j)

d ↓
list of len:K + list of len =( * K+

V by It V by It

merge (1 , (c) contains elements of C , 51 ,
in sorted

order

↳ Mergesort (1) for len(1) = k+1 is in sorted order.
A



(8) 1/25/24DISC . 1B

strong Induction Review

① Base case (n =0) IH (4 : 0
,

1
, 1, . . ., k)

③ Is (n = k + 1)

Proof by Induction Review

Br (U : 1) : Fi = Fg - 1
= 2-1 = 1

IH (n = k) : assume IF: Fr + z
+

Is (n: k + 1) : Fi : F+Fi

=

Fr+ + Fi+ z
-1 =

F(x+ 1) + 2 + /

Discussion IB Notes

-Homework 1 : Due this Saturday
- Read : Notes 34
- No TA notes

- would still recommend reading disc . solutions



stable matching premise

n jobs
:I

optimal way to

-> pair everyone up ?
n candidates:
propose - Reject Algorith

loop :

① all 5 propose tomostpreferred c that hasn't

yet rejected them

& eachC rejectsallbutmost pretersits
break

aC I ③

Resulting pairing : &(A , 2) , (B , K ,
12 , 313

terminates in 5 days



Stable Matching
- algorithm always halts

for n elements
,

maximum of : days

↳ hasn't halted ? At least 1 I was rejected .

n2 possible rejections .

· matching ,
s

,
is stable iforogue couples

# It

1 : B) (If stable :e↑ I I
2 3

3 prefers 1 over 3, ↓
and 1 prefers (B

, 1) is a

B over C

vogue couple

vogue couple:refer each other

over their actual partner
-



improvement lemma

on each day ,
Is offer eitherstays same of

#better .

-> candidate's offers improve
-

↓

!I algorithm
ends when you

C meet in

middle-

-> job's options
&
get worse-

Stable Matching Proofs
- induction on of days

- what holds on day K + 1 ?
-

- proof by contradiction -> does -p violate stability ,

-

halting , improvement lemma?

- direct -> consider (J . 2) ,
IJ' , is ,

etc .



optimality
--couldbe moreMa- estable

↳ ex: what ifandidates proposed instead ?

orferent algorithm ?

job optimal/candidate pessional 3 job proposes

job geteestcandidate it can hope to
getin a stable matching.

job pessimal/ candidate optimal 3 candidate
proposes

candidate gets bestjob it can hope to get
in a stable matching.



proofExample
thm : when jobs propose -> job optimal matching-

#: suppose not job optimal 72P
↓

matching : matching
:

= C * 3 c

3i 34=

cY : j*>]
K: <

*
rejects ] for >*

J : ( * > C

&* -
implies (3 *, C* ) is vogue in 7

⑮ I
34= => unstable = > contradiction. A

->



DISC . LA

jobs propose : job-optimal/candidate pessimal
↓

job prived with mpreferred candidate

of all possibletable matchings .

Stable Matching Review

Most
15 ;, 2) would be vogue pair.

-> K-

-> T/F ?

# suppose ins : 15
, (1) because c rejects]

ins : (3
,
1)

D J : ( > C' because it proposed to C first

② I more optimal man c

③J is supposed to be job-optimal -> -
1 True

Discussion (A Notes

- Questions from lecture?

- Redd : Note 5

HWI released !

some OH will be online



Graph Terminology G : SVES ECVXV

/
edge set :vertex set :

((t ,
B)

,
(A

, 23
[A ,

B
, CS

↑

simple,
directa

I
connected : E path bit any

connectivity

⑳rahetwo vertices



Degrees of Vertices

O0 degree of vertex

# edges incident to it

64%
deg(V) : 4

handshake lemma #:

00 1 + 1 + 4 + 1 + 1 = 8

= deg(V) : <IE1 6 IE1 : 4
VEV

Graph Traversals

··
cycle 33 ,

2
, 4

, 33

except start/end

Eulerian walk/Tour-

every edge used
,

once
!Miltonianwalk.

A

↓ exactly exactly
tour exists for connected

,

even-degreed graph



trees

equivalent definitions of trees

Oconnected&ocycles size of Jets VEE
T

② connected & IVI : /El + 1
--

③ connected& removing anyedge disconnects.

④cylles &adding an edgeCreates cycle.

=
leaf

node of degree 1

proofs by Induction

-onvertices oredges remove + add

-arbitrary
- for Is

, go from K + 1 - k +> 4 + 1 Vertexledge

build-up error
incorrectly assuminggraph must be built

fromgraph of same property.



Induction Example

e
: tree w/n vertices has n-l edges

BC : n = 1 -> O - has edges

IH : assume tree w/K vertices has k-l edges

IS : consider tree w/K + 1 vertices :

tree w/ n = k,

-
k-1 edges

↓

k edges &
to achieve n = k + 1

, must

-Add(k +1)th veriex w/1 edge
.. iS VA



build-up error

do NOT go straight from K + K+ 1 !

: if every vertex deg (V) 11 graph is connected .

#B: T & this proof
is not correct

IS :

① consider graph of vertices-do connecteda
② add 1k + 17th vertex-
⑤ connected ?

↓
consider counter-example

:

% &
what went wrong ?

build-up error
incorrectly assuminggraph must be built

fromgraph of same property.

let's try again ! this time , use KH + k + k+ 1.

If: IS :

① consider graph of K+ 1 vertices :%
② remove a vertex -> graph ofK vertises : 80

↑

graph contains vertex withleg(r) : 0 !

#can't apply ,
so proof can't work out.



DISC . ZB

connectivity & Trees Review

lower bound scenario : ·
9 %

7removeedoeliminatethe
⑤ remove 1 edge: -> I components

① remove edges-> K + 1 components

Discussion 2B Notes

-

Reading : Note 5

- HWL due this Saturday

-Graph coloring no longer in scope i



complete Graphs
every vertex is connected

toevery other vertex.

ka Kj

# edges in complete graph

-

Bipartite Graphs

unionvertices in
43

. 3
no edges betweenvertices in R.

EELxR



planar graphs

& can be drawnWithoutcrossing edges .

faces= subdivisions of the plane

all trees
are planar

: Placesone e

Es = 2e3 #of sides=edges
↓Euler's formula

planar connected => V + f = e + 2 assume

3 sides per

corollary -
face

if planar- e = 3r-6 converse is
not true !

e .9.is passes.

Non-planar Graphs

·Kuratowski's ihm.

contains Ks
. 3

or kjE) non-planar



Hyper cubes
I

O

0-

ex : 1-dimension :

# c-dimensions : "Op
each vertex giveny a
n-length bit-string .

10

edges between bit-strings that
differ by 1-bit.

Induction on Hypercubes

dimension = k-1 -+ d = k
① two copies of

10%0 " k-1 hypercubes
10 ② connect corres.

vertices ,

n-dimension hypercube

IV1 = 2"
, IE) = n . sh -1

I
start with two ,

duplicate with each
additional dimension



Graph coloring

premise : no two-adjacentvertices
-

can share a color.

↓

min. # of colors necessary :

E: -Ecolorablepartite .

4 - color thm
.

planar graph is 4-colorable·



DISC . 3 A

Graphs

-namecomplete

Free V - 1 I I

planar j e = 3V - 6 e -V + 2

did-1 not always planar

planar Graphs Review

#IF :

True· n vertices
,

n-1 edges -> tree· So

n vertices
,

n edges -> tree wh one edge .

% = planar adding an edge creates

66 cycle , but is not sufficient to

create crossing.

Discussion 3 A Notes

-coloring /duality not in scope , but bipartite

graphs are

- Read : Note 6 E 7.

- HWs released
.



working in Mod Space

# (mod 5) -> allowed Anteger values : 50 , 1 , 2
,

3
, 43

to represent #15
,
circle back around :

-> 5 = 0 (Mod 5)

-> 6 = 1 (mod 5)
modular congruence

-> z = 2 (mod 5) , etc .
3 X = r(modm)E)

X = km + V =)

x % m =

rx
remainder

values inmod m 3 integersa

&: 17 (mod5) = ?

17 % 5 : 2 Ex 17 = 3 . 5 + 2 E) 17 = 2 (mod 5)

↓
more generally : 17 = 12 = 7 = 2 = -3 (mod5)



operations in Mod Space

addition
,
multiplication

, subtraction ->
ameas

usual=
-

ex
:

8 x17 (mod 5) = 146 = 1 (mod5)

↳ 3x2 = 6 = 1(mod5)

⑳ 3641 = 3 . (3)648 = 30(32320 = 30(97320

= 3 . (-1)3 = 301 = 3 (mod 10) + 3

modular exponentiation

canmodbase,
but notnea



Division in Mod space ?

↳ unlike+, -

, X
,

division does not guarantee
integer result.

ex'
-

now to represent 3/2 (mod 5) using 90 ,
1 , 2

,
3

, 43 ?

different approach : division = multiplying by inverse

multiplicative Inverse
&

just like now

X = d (mod m) E) dX = 1 (modm) 2.
: 1 M

regular arith .

= 302" (mod 5)
,

whereI= (mod 5) .

203 = 6 = 1 (Mod 5)
↓

2 = 3 (mod 5

30
%

= 3 . 3 = % = 4 (mod 5)



Exponentiation inMod Space

-> can onlyreducing base during exponentiation reduce base,if a = b(mod m)
, a = b" (modm) not power !

: (mod= = =
(MST

-> 3 = 9 = 4 (mod 5)

-> (3%2 = 42 = 16 = / (mod 5) 3 repeated squaring

->

(34) = 1 = / (mod 5)

310 = 38 . 32 = (34). 32 = 104 = 4 (mod 5)



Greatest Common Denominator

gcd(X , y)
= largest shared factor bit X & Y

ex
:

gcd(6 , 4) = 2 gcd (7
,
4) : /

g (d(X , y) : 1 Es X & y are co-prime

ex:

g(d (86 , 24) = ?

Enclid's Algorithm
replace (X , 4) with (y , x(modys until =

gid(24 , 14) J 24 (mod (4) = 10

because 1401 + 10 = 24
= g(d (14 , 10) In in un

mk r

= g(d (10 , 4)

= g(d (4 , 2)

= g(d (2 , 0) = 2



strategy : convert to regular integer space .

X = r(mod m) E X = r + km
,
KEL

Enclid's Algorithm
gcd(X , y) = g(d(y ,

X mod y)



D ISL . 3 B

Modular Arithmetic Review

-instead of division -> we multiplyby inverse !

- multiplicative inverse satisfies :
db = / (modm)

-a Eb (modm)
- inverse of a exists when gcd (d ,m) =

1

- a (mod m) isunique.

gid Review

d(n = n = kd
== mk => mk(mrdm) = 0

True

-

= / (mod m) => ax1 = a (modm)

Discussion &B Notes

- Read : Notes 6 7
- HW3 due on Saturday



Review : Euclid's Algorithm
-use to find gad(a , m)

O gid (d ,m) -> gcd (m , a cmodm)

& repeat until2nd term = o

why do we want god ?

- check if d"(mod m) exists

↳
i. e

.,
is g(d (a , m) = 1 ?

Anda (mod m)

↳ i. e . what is b s
.
t . ab + mK = 1 ?

finding a
- 1

ab + mk = 1

Y Y
d -

1

integer multiple of m

Extended Euclid's Algorithm
godl : recursive version

geaca , my = ab + mi fizerative
version



Extended Euclid's Recap

- recursive & iterative both give same

result

- iterative method :

① m = 1 xm + 0xa

a = 0 xm + 1 xd

② multiply 2nd row (LHSd RIS)
by constant

⑤ subtract from 1st row :

m = ( x m + 0xd

#= Comcast
:

⑦ repeat with newest row until CHS = 0



Chinese Remainder Theorem

X = r
,
(mod m

, ) =
where my are pairwise

co-prime

X = r
,
(mod mc)

goal :
->

X = r
,
(mod my) find X

,
a

unique solution
(mod m

,MzMs)

CRT Intuition

suppose : b = 1 (mods)
, b = 0 (mod 5)

bc = 0 (mod3)
, b = 1 (mod5]

if y : /b ,
+ rbz :

↓ -> y : rb ,
+ rbz(mods)

y = r
,
b ,+ bz (mods) Y = v (mod 5)

y = r
, (mod 3)



CRT recap
X = r

,
(mod m

.)
D goal : find X s .

t.
X = R (mod M2)
X = rz (mod My

②inddisde , anSta me mod my

Ia I ·
:

az o O I

③ solve a
,

= (m ,ms) ((mcms] "mod m,

ac = (m , M3) ([m , ms]"mod mc)
as = (m ,

m
. ) ((m , m2] "mod my

④ sum together : X = r
,
d

,
+ red ,

+ rzds

general CRT

= (mm.3) Mc-My mod Mi
X = r

, d ,
+ raz +... + red Mai (mod m .. mc :..mp)



CRT parting thoughts

~ why do m ,
M
,

. . ., Mr need to be

pairwise 10-prime ?

↳

someo.... Mi7 "mod mi i

can exist !

-solution will be unique (mod m .. my ....mp)
-

try to understand what each term

represents ; don't just memorize.

Fermat's little Theorem

a" = a (mod p)

if p is prime , a t 0 :

ap
- 1

= 1 (modp)

↓
next time : use to

prove RSA works !



Extended Euclid's Algorithm
2 (0) + 5(1) = 5

2(0) + 5(1) = 5 multiply

2 (1) + 510) : 24 Xdle, a
T

(2) "
so " = - z = 3 (mod 5). Extended Enclid's Alg.

solves gcd(X , y) : ax + by

Multiplicative Inverse

3 . 2 = 303 = 9 = 4 (mod 5)

only when

existence of mult . inverse -am are

a (mod my exists ES gcd(a ,m) = 1 -oprime



DISC . 4 A

CRT review

YE modM3 if gd(MM,
X has unique solution
mod M

,
Mz
.

X = r
,

9 + -b

where :

d = 1 mod m . a = 0 mod My

b = 0 mod m
, 3 b = 1 mod M

,

X = r
, (m , (milmod m

, 3) + r
, (m mimodm . ])

~

A b

Discussion 41 Notes

- HW/ no HW into coming soon

- read : Note 75 Note g

-HW4 due this Saturday ,
2/17



RSA premise

E(X) private knowledge :

Alice-> Bob
d

X D(y) = X

public knowledge :

N, e
, E(X) <

Eve can access public keys
& encrypted message , but

can't decrypt without

private key'

key Features

N = pq = product of primes

e iscrme to (p-1) (g-1)

d = e
+ mod (p-1)(9-1)

Alise sends encryted message : y
: E(X) = X " modN

Bob recovers original message : X = D(y) = y
&
mod N

Encryption- > Decryption
D) (E(x)) = D(x)) = xedmodN = X modN



Review

Fermat's Little Theorem

apt = 1 (modP) for p is prime ,
a to

Why Does RSA work for Bob ?

(xed = X modN
-> Xe -X = 0 mod N

① xed-X must be divisible by P

② yea -X must be divisible bya

I = 1 mod (p-1)(g - 1) -> ed = k(p + )(g-1) + 1

yed - X = X(xk(
-1( - 1)

- 1) = 0 mod I

case 1 : X/4 trivial

case 2 : (XXP)

x) [x * - (k(y -k) - 1) = X((k(y
-1)

- 1) = x(1 - 1) = 0

mod P

WLOG ,
xedX is divisible by p, g & therefore N.

A

why does RSA help encrypt from Eve ?

- N is Large -> hard to brute force g
: X"modn

-hard to factor pg
: N
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RReviewNarePresent
private key : &Ste"mod (p-1)(g-1)

xed = X mod N

Review problems

answer :19
Discussion 4B Notes

- HW 2 grades released !

More info about HW/no HW soon

- Read : Note 7 & 8

- HW 4 due on Saturday



polynomials

&P(x) = daxa + ag ,
X

* "

+... + d
,

x + god
+ 1 terms

↑
d = degree of polynomial

: largest power

roofs degreed =
~ is root iff p(r) = 0 at most d unique root,

ex: P(x) = x2- 5x + 6 - degree = 2

= (X - 2)(X
- 3)

P (2) = 4 - 10 + 6 = 0

P(3) : 9-15 + 6 = 0
3253 are roots of p(x)
4

2 unique roofs

polynomial Representations

① d + 1 coefficients : Ad , da , . . . , 9 ,
do

② d + 1 points : (x1 , P(X 1
),

..., (Xd+ 1
,
P(Xd+)

Finite Fields

GF(p) = all operations (mod ps , p istime

↳) fractions or division - multiply by inverse !



polynomial Interpolation

goal : given d + l points
,
(Xi ,

P(Xi) ->
-

P(X) : - degreea polynomial
that goes turon, the

Approach : Lagrange Interpolation

① P(Xi = Y ,
solution is
unique

P(X() = Yu-given pointerest
#(1)= 1

,
0

, (x2) = 0
,
0

, (x3) = 0 3X15Xs are
foots of D , (x)

*
c (X) = 0
,x) : 1

, 02(Xs) = 0

Us(X 1 ) = 0
, 5s(X) = 0,) = 1

=S when

-at4 , (x) + 4202(x) + y , 83(x)



Lagrange Interpolation Recap

given d + 1 points ->> p(x)= :0 ; (x)

linear comb .
of d + 1
/

degreea polynomials ,
Gi(x)

Gi(x)=
~

in GFCP)
,

division is multiplying
byverse in (mod p) .

This sounds familiar r...

same process as !
CRT : X = 49 , + red2 + ry As

a =Mi) (H mj] "modmi)
-mp(x)=

y ,
4

, (x) + yz0c(x) + y38g(x)

-i = (*(x - xi)]( (Xi - Xj))"modp)



secret sharing premise

↳

&
#officers ,

↑* each officer gets one piece
Of information

↑
secret can be recovered

ifK people are present.
↑=

Approach : Polynomials !

↑ (1 , P() each officer gets one
point on P(X)

↑ (2 , P(27) use&
recorragrangeInterpolatin

is

↑ (3
,P(3)) ↓

-valuateP(O) = Secret

k officers -> K points -> degree1 polynomial

can k-1 officers recover plo) ? hope !
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Error correcting codes

message : (1 , h) , (2 , 4) ,
(3

, 4) ... (n ,>

↳ can represent asconomialwideg. n-

n points through ->
can we

channelaMyrecover P(X)
:

Erasure Errors Alice

00
problem :LoseK out of n Points ↓

solution : send t points Bob

000

General Errors

problem : channelChanges K out ofa points

solution : send # points-erlekamp-wech

A lice 0000
->

000 0 Bob
w

general error

Berlekamp-welch
Bob doesn't

Bob has.. Bob wants. -- knowwhich-

ntzk points ,
-> P(X) points are

k are P (1) ,
P(2), ..., P(n) corrupted !

corrupted



Berlekamp-Welch Main Ideas

E(x) = (X - e , )(X
- (2) ...

(X - 2x)

- deg .

K

~ roots at error locations
- 1st coefficient is 1

Q(x) = P(X)E(X) ->

p(x)=
- deg . n - 1 + k

BKW Procedure

D E(x) = Xk + bxk +
+...

+ b
,
x + b

Y - 1

Q(x) =

An -1 +kX
* +

+ +
..

+ a
,
x + d

② set-up system of equations

Q(i) = P(i) E(i) = riE(i) for 1 ...
n + 2k

③ solve for coefficients of Q(X)

⑨ solve for coefficients of E(X)

⑤ solve P(X) : &x) -> recover PCK ... PC
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Review : Berlekamp - Welch

n-length -> deg(P(x)) = n -1
message

k errors -> deg(E(x)) : k

Q (i) = v E(i) -> deg(Q(x)) = n -1 + k

ECC Midterm Problems

n + 24 + e

X= 1 , X = 12

Week 5 Notes

- Read : Note 9
,
II

,
12

- HW 5 due Saturday
- no HW option released on Ed

- Midterm in 2 weeks



Review : Bijections
cardinality of Jets

bijection=> 1A1 : /BI

· f : A + B one-to-one =>

ItIIB/
f : A ++ B

& onto:bEB
,

EA-A S
.t . f(a) = b

Every element in B corresponds to

at least one value in A.

② one-to-one: a
,

d, A ,
did = +(a> # f(d))

Unique elements in A correspond to

unique elements in B.

countability
counting

: defining bijection with IN

cor some subset of IN
A

Bijection b/t A& B
,

sit.

O AEI =

B is countable !



cantor-Bernstein

f : A + B is one toone g : B + A is one-to-one

=> bijection between A & B

countable Sets uncountable sets

subsets of countableJets, supersets of uncoutable

Jets
, P(IN) ,

IR
IN ,

E
,
Q

,
IN X IN

-

cartesian product her set
co-length binary strings

Proof : Q is countable

show : f : Q- IN

~ each point corresponds
to (n , b) t Lx[

43 2

5
O

I can enemerate elements

:
in 2x2

↓
[X1 iscountable.

Q EX1 =Q iscountable ·



proof : IR is uncountable

Proof by contradiction assume : f : I-IR

enemerate every3 real number.

① is - surjective ? Let's make a new # !

·.I ...
② change each digit (eX : d + 2 mod 10)

0.I ...do

③ if t is bijective , f(n) = 0 . 7691 ... for some
N

④ but decimal place n + 1 is different

in 0 . 7691 1... US . +(u) !

⑤ 0 . 7691 ...
is not enumeratedisno!

cantor's Diagonalization Argument
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Review : countability

types of sets :

D finite ,
ex : 50 , 13 finite - length bit-strings

② countably infinite ,
ex : 30 ,

1
,

10
,

11
,

100 , ....

⑤ uncountably infinite ,
ex : 2010 ..., 101 .., ...

co-length bit-strings
Sp'23#15

1. False
, 1 . True

week 6 Notes

- Midterm :Wed
., 316 , 7-9pM

↳No HW , no Thes ,
Lecture

,
no wed . discussion

- Read : Notes 125 10

- HW6 dre Saturday



computability
some problems can't be solved with a program !

Example : Halting problem

① suppose testHalt exists and performs :

True if P(X) halts

IstHalt (P, X) = & False if p(X) loops forever

② suppose inving exists and performs :

Leving(P) :

③ execute

if TestHalt (P
, P) :

Turing (Turing)
100p

else :

return/halt

⑭ case 1 : Turing (turing) loops.

- TestHalt (Turing , Turng) : True 7 contradiction
!

- Thring (Turing) halts

⑤ case 2 : Turingturing) halts.

- TestHalt(Turing , Turing) : False ]- contradiction !
- Turing (Turings loops

⑥ By contradiction , TestHaltdoes not exist .



Halting problem Takeaways

- Test Half does not exist

- Any prog. that could be used to construct

TestHalt does not exist !

proof : P(X) is uncomputable
① suppose

Test other exists
.

& show Test other solves TestHalt .

def TestHalt(p , X) :

def Q(y) :

P(X)

do what Test other is checking
return test other (Q ,y

③ contradiction : TestHalt can't exist.

⑦ conclude : Test other can't exist.

Intuition

- can prog return in finite # Steps/ loops ?

-> probably computablee...

- will prog potentially takea steps ?

-> probably uncomputablee...



counting rules
k choices

D T TT
.. -

K

T ↑ ↑
n2

options options --- orious
multiplication rule

n
, xnzx ... xUk total ways to choose

② divide by # of duplicate ways when

distinguishing between them doesn't matter

division rule

A ways
,

but m of the A ways are

equivalent- > divide by m

combination

choose K out of n,

order doesn't matter

(i) : ins !

/
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Review : computability

- Halting Problem is uncomputable

- If Testother can be used to makeTest Halt=>

Testother is uncomputable

Sp : 23 Final

3. True , 4 .True

week 6 Notes

- Midterm :Wed
., 316 , 7-9pM

- Read : Notes 125 10

- HW6 dre Saturday



↑ rinciple of Inclusion - Exclusion

1AUB1 : /Al + 1B1-1A1B/
① j ↑

amt .
in A amt. in Part in

B #andB

⑯ IUBUC1 : 1A + 1B1 + 1c

- 1A1B1-IBOCI-ICNAl

+ (A1B1()
- alternately subtract/add back intersections to

~

avoid double counting

permutations
,
combinations

where order matters
-iwa tomose outa

where order doesn't matter

AKA ( *)h choosek "

(i) = (1) in general



combinatorial proofs

ex: (Y) = <(2) + n

↓of
: tell equivalent stories for&

LS: I haveInactors , and a
a

S : I haven short actorsa
tall actors .

e1 : I cast 2 short actors -> (2) ways
case 2 : I cast I tall actors -> (b) ways
-

Cases : I cast 1 short I tall -> n"ways

-(2) = <(2) + ni

strategies
- addition means multiple cases

- multiplication means simultaneous choices



Balls & Bins

0000 0
k balls

,
n bins

~L

(Mtk) : (uk = ways to arragee

ex : 5 balls
, 4 bins -> (4-1

+

5) = (5): = 54

ball wall

Tin AKA"stars & bars"

equivalently : K balls
,
n-1 walls

-# positions available

& Snot choose n-1 positions to be walls !

equivalently :

(4-1t choose 1 positions to be balls !
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Review : counting
How many ways to ...

- choose objects out of ? ht:

-choose objects out of n with order ? I
- place n objects in m bins?mi
select any subset fromu items ? I"

SP123 Final #10

4 .

n !, 5
. (n- 1) !

Week 7 Notes

-

congrats on midierm ! -j

- Read : Note 13

- Feedback ? Let me know in Attendance form



probability space
sample point : outcome of

-
G O~ random event (w)

C
O W

⑧

0 S sample space : set of

o

O
O s all sample points

(2)

each sample point ,
coffe

,

occurs with

probability IP[W].

probability law properties

① Of PIN)-1 0I IWT

uniform probability space

-every wet is equally likely

IP(W):el -> how to get 11 ? counting :

Events

event= subset of sample
-

space (A(t)

· probability of event in unif .
-

·

IP(A): [W]=
ex: IP(A):=



12) = npin.
n ball 1

# pairs where

ball 1 I ball 2 :t n - n

#of pairs where

3 all 13 ball I :

E(n =
- n)

IP(ball 1 < ball 2):)



n ball 1

-ba

i

i
1P((1 , 2)] : min-1)
IP(ball 1< ball 2]:is:

IP(ball = ball 1 + 1):is : in
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Review : Discrete Probability

event : subset of sample space

p(a]= for discreteuniform space

complement: # : -A

IPCE] :A: 1-PLA
SP122 Final #10 . 1

IP [AlB]

week 8 Notes

- regrade requests open
! due 3118

- TA 1 : Is open

-HW8 di sat,

-Read Notes 13 14



conditional probability

#uni-

B1

n un MA A

renormalize probability !
IP(B1A] : IRAwe're in a new ->

-

sample space :

Bayes Rule

IP(BIA) : IBIA)-ABIPB
↳ relates PCB1A] & IPCAIB]

Law of Total probability - complement of

event A !
1P[B] = 1P(B1A) + 1P(B1F] i . e. /A

General Total Probability
Al , Az , .... An partition --> they cover all

- don't intersect

=> IP(B] = IPCB1Ai]: PCBIA : ]IPLAi]



Independence

chance of B * affected by whether

or notA occurs !

independence

PP(BIA) = 1[B] => PLANB] = IPCATIP(B]

IP(A/B] = [A]

pairwise independence

each pair is independent ,

i

. ..e.:

IP[AlB] = IPCAJIP[B]

IP(B1C] : IP(B]1P[C]

IP(C1A] : IPCCTIP[A]

mutual independence
every subset is independent , i . e .:

given A , , ..., An

IP(Pti)=A] where I 31 , ..., 3



= nice
i

dicez

⑨ IP(A1): IPCAz]: lay] :

③ IPCA , 1Ac] = 55 = 1P(A , ]IP(As] -

② IP(Ac1As) : Jo = PLAzTILAs] v



=nice
=y

IP(A2)A , ] = IP(Az]

↑ ↓
dize 2 IPCA

, 1Az]

① pairwise independence :
= IPCAzIA ,JIPC)

↑P (A ,
& Ac) : PLA ,

]IPCAc] V
= IPCAz]IP(A

, ]

IP (Az & As) : PLAzTIPlAz] V
-> Yes !

IP(Ag & A
,
3 : PLAy]IPIA ,

I v

② mutual independence :

IPCA ,
1 Az MAg]

: IPCA , JIPCA2] IPCAs]
-> no !

It => (t)(5)(i)
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Review : Conditional/Total Prob . /Independence

IP(BIA) : BATABS
~ partition

-f

IP(B] : [P(B1Ai) : [IP(BIAiSIPCAi)

IP[BlA] = IP(B] EIP(A1B) = P(A)IP(B])A & B independ .

FA'2l Final #11

3/5

week 8 Notes

- regrade requests open
! due 3118

- TA 1 : Is open

-HW8 di sat,

-Read Notes 13 14



Intersections of Events

-

/T* PLAMBT = IEBIATIPCA]

n -B
IP(AlB1C] : PCCIBMAJIP(BIA] IP[A]

↳ IP[A ,] xIP(Az] X
...XIP[An] when

- independent events !

multiplication race

IPC1"A ; ]
: IP(A

,
] xIPCAcIA , ] xIPCAs/A , 1Az] +

...XIPCAnIlAil
i = 1

Unions of Events
IP(AUBUC] :

add ! IP[A] + 1P[B] + 1P[C]subtract
- IP(A1B] - IP(B1CJ- NCC1A]

->

add
to avoid back ! + IP(AlBlC]
over counting
sample points

Inclusion - Exclusion Rule

IP(VA:7:PLAiT -

PLANA j ] +.. ED" Pt
↓ so we can concludee.

inequality becomes

Union Bound Equality whenmutually

IP(V.A : ] =P(Ai] exclusive events
-

(no overlap
!)
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Review : variance& covariance

var(x) = sou(X
,X)=[X]-E(X)) " =how spread

cov(X ,Y] = #(XY] -

ECXJECY] = how correlated

are X& Y ?

X & are independent => COV(X ,Y) = 0

but not the other way around !



Review : Indicator variables

Xi =

1 if event occurs E(Xi] =

P

E O otherwise var(Xi) = P(l-p) =I

X= Xi =# occurences out of n
, Xi are IID

#[X] = EC
,
Xi] = nE(X 1]

E(XY = E(Xi)"] = EX +2 XiX; )

concentration inequalities

& now likely isitTrenter !i [

-> for nonnegative RVs
Markov's inequality only !

IP(X= =E

i howlikeisit fora
M- 2 in M +

chebysher's Inequality
IP[IX-E(X]/= C]=



Estimators

↑ estimates p if ECPT =

P .

estimation error bound

1p-p12a

IP(1p-p1 = 3) = confidence

↓

IPCIP-p12] < 1-confidence

sample Mean

In+
...

is an estimator ofXi].

Law of Large Numbers

lin co IP((in-M1 = 2]
= 0

↓

probability of deviation goes to 0,

↓ converges to [Xi]
(estimator -> true mean)
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Review : concentration Inequalities

Markov's : 1P(X[c] < ) ->
one-sided,
X is non-negative

Chebysher's : IP(/X-EX]/ = c]=x) -

>posideda
negative

Review : Variance

Discrete uniform:1 geometric:Bernoulli : p(l-p)
poisson : X

Binomial : up(1-p(

SPI3 #12

I

5/6

Week 12 Notes
- HW 12 due Saturday
-read NOM 21



continuous vs
. discrete

1 1 discrete
& uniform

continuousunito
T X "s is 94

O is 'Y
P(X = 1)= = 0

IP(IEX = 2) = 1
-> Wecan determinentervals !
-

probability density function
1

#probabilit
ga

(x)dX

Xb]=
cumulative distribution function

↑ (X[b] = (fy(x)dx = Fy(b)

& (X= X] = Fy(x) =[y(t)d



relating PDF & CDF

F(x=Hedz cintegrate !)

->

fy(x) =PDF
F(x) = C DF ,
T

,

-> not a probability -> Is a probability
-> fy(x) = 0 fX ->

0[Fy(x) = I
->

18 fy(x)dx: ->

lim Fy(x) = 1

-> IP(a= X= b] = C+x(xax ->(P(X*x] = Fy(x)

-
f(x)= F(x) (differentiate !)

other ideas from discrete probability--
E(X) = /@Xf(x)dx S instead of sum-> ntegral !

E(X) : (3x : f(x)dx

var(X) = #[x2] - (#[X])

X & Y are independent E fxy (x , y) = fy(x) fy()



continuous joint PDF
-> function of two

-

variables

#
- probabilit is a

double
-> integral

-> fxy (X , y) = 0 + X , y + IR

txy(X ,y) = probability per 1095 f (y)dxdy
-unitarea

1P(x=X = x + dX
, y = Y= y + dy]=xy>dy

I

height ared

joint PDF

IP(a =Xeb ,
c = Y [d] = 19 fxy (xy > axdy

exponential random variable
↳ continuous version of geometric

-

↳ XNExp(X)
,

where 1israte of occurence

#(X)=
PDF : f(x) = &XeXX , Xz

varix) =otherwise
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oMz 1P(X2kM] =*

M
Ipm

y
, ,

iM

m, 0 + M
, okM

= M

My · kM = M

mz=

m ,
+ m

z =

amTKMomMe M mi = 1 -Mz

kMomc = MCM ,
+Mas

KM2 : /-Matme

kmz = m
,
+ Ma M2=
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Review : continuous vs . Discrete



standard Normal Distribution(E) =1

- Var(z) =1

-16 ! ! Z0
, 13

standard normal PDF standard norm . CDF

fz(z)= (z) = 1(z =z):ht
general Normal Distribution

X = 0z +M
↑ 9

Scale shift by
by sid . mean

#(X) , Var(X) = G

general norm . PDF X-M,0

fx(X)= - (X-M)202

adding Gaussians
if X , Y are independent,

aX + by nN(Mx + bMy , a20x +b2")



central Limit theorem

X1 , Xz , ... are IID
, E(Xi) = M , var(Xi) = 0?

XinMveges to JC,

as n -> co.

another perspectivee...

- > N(M ,) as n + 0.

Also , as n-> c , variance -> 0.
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Review : Gaussian R . V.

fx(X)= - (X-M)202

SP123 #15

1 . M , 2 . M2 + o Y
3 . 302 + M3

Week 13 Notes

-last time no HW option will be available
- RRR week : no required & iscussions

- read Note 22



markor chains
state space(X) =

1343

①Q 31 ,
2

,
33

->

-
1/2 Xu = position at

time u

Markov Property

P(Xn+ 1
= j)Xn = i

, Xn + , . .

., Xo] = 1[Xn+= j(Xn = i)

probability transition matrix

DP(i , j) is [Xn+ j(Xn = i]
p :(ii) ② Pli, j] = 1

③ 0xP(i , j) =I

ex: Start at Xo : 1 ->o
= [10 07 +

# = (01 ]

1100/] =

101 1)
in general ...

#
n + 1

: Hup ,
Hu : Hoph



invariant distribution

# = MP -> In : To

- if you start in to ,
distribution stays same !

- to solve for # :

& H : ↑P -> AKA eigenvector of PT with

eigenvalue of 1
② Zi) = 1 - sum of entries1

Fundamental Theorem
- irreducible = from state O ,

can go to

any state
- aperiodic = gad &# steps to return to 05 = /

↳ eX: self-loop >> aperiodic
I

O is periodic . OXDD" periodic
I

Fundamental Thm.

finite , irreducible , aperiodic = > In converges
to invariant distribution as neco
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Review : Markov chain properties

irreducible = path exists from every to

every

period= gldE# steps to return to 03
aperiodic = period of 1

Week 13 Notes

-last time no HW option will be available
- RRR week : no required discussions

- read Note 22



distributions at time n

-i p : (ii)① ⑪

To
: % . = PMF ofNo

i j

↑ = Hop =

o 91 = PMF of X
i j

invariant distribution

Mo = 942 9
i j

Mi = Hop = ↑ 9"2
i j

↑ =( ) : invariant distribution



solving for invariant distribution

& set up M= P

probability
# (i) =Pi(j) = 2 of entering x H(j)
ji from ⑪

②H(D+ (2) +.
..

+M(m) = 1

③ solve system of equations for

# (1)
, ↑(2), ... , HCM)

first-step equations
to solve for property <(l) :

& write all) in terms of2(2)
,
<(3), ... a(m)

② write equations for each state

③ solve system of equations for a()

Ex: avg. # steps to state K

① P(i) = 1 + [P(ii) &(j)
j

② B(K : 0

③ solve for BC1) , if starting from 1
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review : calculating it

① (1) : I Pπ(i)
H(m) = PimT(i) S

# = πP

⑭
Sp122 find #19

start from #
what is probability of

reaching@ before O ?

4/15
Week 14 Notes

- discussion today is ren-lecture content

is out of scope
- next week

, discussions are drop-in of

-fill out course evals !
- HW 14 due
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what works for

finals studying advice me
,

at least ! -

① make list of all topics

② sort by least to most comfortable

③ for each topic :

& review concept until you can

explain it to someone else.-

② ask questionsEd/AOH.

⑤ do relevant exam/discussion problems
until you no longer make mistakes .
-

④ do a full
, timed practice exam

.

Week 14 Notes

-Last discussion ! next week
, this time will be

drop-in OH.

- HW 14 due on Saturday.

Fill out course evaluations + they help us

a 10 + &D


